CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 5: The Definite Integral 5.2: Definite Integrals pg. 274-284

What you'll Learn About

- Terminology and Notation of Integration
- The Definite Integral
- Area under a curve using geometry
- Properties of Definite Integrals

Evaluate the definite integral using geometry

It is called a dummy variable because the answer does not depend on the variable chosen. \rightarrow
8) $\int_{3}^{7}-20 d x$ 8A) $\int_{2}^{7} 22 d x$
14) $\int_{.5}^{1.5}(-2 x+4) d x$
16) $\int_{-4}^{0} \sqrt{16-x^{2}} d x$

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 5: The Definite Integral 5.3-5.4: Definite Integrals and Antiderivatives pg. 285-305

| $30 a) \int_{1}^{2} \frac{1}{x^{3}} d x=$ | $30) \int_{0}^{5} x^{3 / 2} d x=$ |
| :--- | :--- | :--- |
| $34) \int_{0}^{\pi}(1+\cos x) d x=$ | $40) \int_{0}^{4} \frac{1-\sqrt{x}}{\sqrt{x}} d x=$ |
| | |

$\mathbf{5} \mid \mathrm{Page}$

| $39 a) \int_{0}^{1}(1+x)^{3} d x=$ | $39 a) \int_{0}^{1}(1+x)^{3} d x=$ |
| :--- | :--- | :--- |
| | |
| | |
| | |
| | |

6|Page

$7 \mid \mathrm{Page}$

Chapter 5: The Definite Integral 5.4: Fundamental Theorem of Calculus pg. 294-305 What you'll Learn About

- Analyzing antiderivatives graphically
- Connecting Antiderivatives to Area
- Taking the derivative of an integral
$\begin{array}{ll}\text { A) Find } \frac{\mathrm{d}}{\mathrm{dx}} \int_{1}^{x}(\cos t) d t & \text { B) Find } \frac{\mathrm{d}}{\mathrm{dx}} \int_{1}^{x^{3}}(\cos t) d t\end{array}$
C) Find $\frac{\mathrm{d}}{\mathrm{dx}} \int_{x^{3}}^{x^{2}}(\cos t) d t$

| Find $\frac{\mathrm{dy}}{\mathrm{dx}}$ for the given function | |
| :--- | :--- | :--- |
| 2) $\mathrm{y}=\int_{2}^{x}\left(3 t+\cos t^{2}\right) d t$ | $10) \mathrm{y}=\int_{6}^{x^{2}}(\cot (3 t)) d t$ |
| | |
| $12) \mathrm{y}=\int_{\pi}^{\pi-x}\left(\frac{1+\sin ^{2} t}{1+\cos ^{2} t}\right) d t$ | |
| $20) \mathrm{y}^{2}=\int_{\sin x}^{\cos x}\left(t^{2}\right) d t$ | |

9. Find the equation of the tangent line to the graph of g at $x=-2$
$\mathbf{1 3} \mid \mathrm{P}$ a g e
(11. Let $\mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{x})-.5 \mathrm{x}^{2}-\mathrm{x}$. Determine the critical values of $\mathrm{h}(\mathrm{x}) \mathrm{on}$

$\mathbf{1 6 | P a g e}$

What you'll Learn About

- How to find the area under the curve using rectangles and trapezoids
- What Right Riemann Sums, Left Riemann Sums, Midpoint Riemann Sums and Trapezoidal Sums are

1. Use the data below and 4 sub-intervals to approximate the area under the curve using Right Riemann Sums.

t	0	2	5	9	10
$\mathrm{H}(\mathrm{t})$	66	60	52	44	43

1. Use the data below and 4 sub-intervals to approximate the area under the curve using Left Riemann Sums

t	0	2	5	9	10
$\mathrm{H}(\mathrm{t})$	66	60	52	44	43

5. Use the data below to approximate the area under the curve using Right Riemann Sums and Left Riemann Sums with 5 sub-intervals.

T	0	8	20	25	32	40
$\mathrm{P}(\mathrm{t})$	3	5	-10	-8	-4	7

18 |P a g e
4. Use the data below to approximate the area under the curve using Midpoint Riemann Sums with 3 sub-intervals.

T	0	2	4	6	8	10
$\mathrm{P}(\mathrm{t})$	0	46	53	57	60	62

13. Use the data below to approximate the area under the curve using a midpoint Riemann sum with 3 sub-intervals

$\mathrm{T}(\mathrm{sec})$	0	60	120	180	240	300	360
$\mathrm{a}(\mathrm{t})$ $\mathrm{ft} / \mathrm{sec}^{2}$	24	30	28	30	26	24	26

	t (minutes) 0 4 9 15 20
	$\mathrm{W}(\mathrm{t})$ degrees F 55.0 57.1 61.8 67.9 71.0
	2012 \#1 The temperature of water in a tub at time t is modeled by a strictly increasing, twice differentiable function, W , where $\mathrm{W}(\mathrm{t})$ is measured in degrees Fahrenheit and t is measured in minutes. At time $t=0$, the temperature of the water is $55^{\circ} \mathrm{F}$. The water is heated for 30 minutes, beginning at time $t=0$. Values of $\mathrm{W}(\mathrm{t})$ at selected times t for the first 20 minutes are given in the table above. c) For $0 \leq t \leq 20$, the average temperature of the water in the tub is $\frac{1}{20} \int_{0}^{20} W(t) d t$. Use a left Riemann sum with four subintervals indicated by the data in the table to approximate $\frac{1}{20} \int_{0}^{20} W(t) d t$. Does this approximation overestimate or underestimate the average temperature of the water over these 20 minutes? Explain your reasoning.

